Let $A = \left[ {\begin{array}{*{20}{c}}
2&b&1 \\
b&{{b^2} + 1}&b \\
1&b&2
\end{array}} \right]$ where $b > 0$. Then the minimum value of $\frac{{\det \left( A \right)}}{b}$ is
$2\sqrt 3$
$-2\sqrt 3$
$-\sqrt 3$
$\sqrt 3$
If ${A_i} = \left[ {\begin{array}{*{20}{c}}{{a^i}}&{{b^i}}\\{{b^i}}&{{a^i}}\end{array}} \right]$and if $|a|\, < 1,\,|b|\, < 1$, then $\sum\limits_{i = 1}^\infty {\det ({A_i})} $is equal to
Let $\alpha $ and $\beta $ be the roots of the equation $x^2 + x + 1 = 0.$ Then for $y \ne 0$ in $R,$ $\left| {\begin{array}{*{20}{c}}
{y\, + \,1}&\alpha &\beta \\
\alpha &{y\, + \,\beta }&1\\
\beta &1&{y\, + \,\alpha }
\end{array}} \right|$ is equal to
If $A = \int\limits_1^{\sin \theta } {\frac{t}{{1 + {t^2}}}} dt$ and $B = \int\limits_1^{\cos ec\theta } {\frac{dt}{{t\left( {1 + {t^2}} \right)}}} $ , (where $\theta \in \left( {0,\frac{\pi }{2}} \right))$, then the-value of $\left| {\begin{array}{*{20}{c}}
A&{{A^2}}&{ - B}\\
{{e^{A + B}}}&{{B^2}}&{ - 1}\\
1&{{A^2} + {B^2}}&{ - 1}
\end{array}} \right|$ is
If $a > 0$and discriminant of $a{x^2} + 2bx + c$is negative, then $\left| {\,\begin{array}{*{20}{c}}a&b&{ax + b}\\b&c&{bx + c}\\{ax + b}&{bx + c}&0\end{array}\,} \right|$ is
The system of linear equations $\lambda x+2 y+2 z=5$ ; $2 \lambda x+3 y+5 z=8$ ; $4 x+\lambda y+6 z=10$ has